AD-AL15 355

UNCLASSIFIED

STANFORD UNIV CA DEPT OF STATISTICS
DISTRIBUTIONS OF QUADRATIC FORMS AND
MAY 82 T W ANDERSON, K FANG

TR=53

F76 12/1
COCHRAN'S THEOREM FOR ELLI=-=ETC(U)
NOOQO14=T75=C=0u42




IO f: s 22
=

- B

I

=

MICROCOPY RESOLUTION TEST CHART

STANPARDS jar <oa

NATING, R




g s

DISTRIBUTIONS OF QUADRATIC FORMS AND COCHRAN'S THEOREM FOR
ELLIPTICALLY CONTOURED DISTRIBUTIONS AND THEIR APPLICATIONS

] BY

T. W. ANDERSON and KAI-TAI FANG

TECHNICAL REPORT NO. 53 N
MAY 1982

PREPARED UNDER CONTRACT N00014-75-C-0442
(NR-042-034)
OFFICE OF NAVAL RESEARCH

THEODORE W. ANDERSON, PROJECT DIRECTOR |

ADA115355

DEPARTMENT OF STATISTICS .. y

STANFORD UNIVERSITY DTIC

STANFORD, CALIFORNIA

R e e ore L SRy ER b

s sty e b s mn

OTIC FILE COPY




DISTRIBUTIONS OF QUADRATIC FORMS AND COCHRAN'S THEOREM FOR
ELLIPTICALLY CONTOURED DISTRIBUTIONS AND THEIR APPLICATIONS

T. W. Anderson
Stanford University

and

Kai-Tai Fang
Stanford University
and :

Institute of Applied Mathematics i
Academia Sinica, Beijing, China

TECHNICAL REPORT NO. 53

MAY 1982

PREPARED UNDER CONTRACT NOOO14-75-C-0442 :
| (NR-042-034) i
: OFFICE OF NAVAL RESEARCH

Theodore W. Anderson, Project Director

Reproduction in Whoie or in Part is Permitted for
any Purpose of the United States Government.
Approved for public release; distribution unlimited.

Accessiogmror

'_iiiémimA&I"___Eg___
DTIC TAB

Unannounced O
Justification —— ——-o

By.
Distyibp}ipn/‘“—
Availability Codqs

DEPARTMENT OF STATISTICS ————**"Avaif'and/oi

STANFORD UNIVERSITY
STANFORD, CALIFORNIA Dist Special




DISTRIBUTIONS OF QUADRATIC FORMS AND COCHRAN'S THEOREM FOR
ELLIPTICALLY CONTOURED DISTRIBUTIONS AND THEIR APPLICATIONS

T. W. Anderson
Stanford University

and

Kai-Tai Fang
Stanford University

and

Institute of Applied Mathematics
Academia Sinica, Beijing, China

1. Introduction.

If the characteristic function of an n-dimensional random vector x
has the form eiE'H¢(E'§E) , where E:nxl s g:nxn , and § >0, we say
that X is distributed according to an elliptically contoured distribu-
tion with parameters |, § and ¢, and we write x N Ecn(g,z,g) (cf.
Cambanis, Huang, and Simons (1981)). In particular, when u=0 and
L= En (the identity matrix), ECn(Q,En,g) is called a spherical distri-
bution (cf. Kelker (1970)).

The class of the elliptically contoured distributions contains such
distributions as the multivariate normal distribution, the multivariate
t-distribution, the multivariate Cauchy distribution, the multivariate
Laplace distribution and the multivariate uniform distribution on the
sphere in R or in the sphere in Rn .

The theory of elliptically contoured distributions has been discussed

by Schoenberg (1938), Lord (1954), Kelker (1970), Das Gupta et al. (1972),




Devlin, Gnanadesikan and Kettenring (1976), Kariya and Eaton (1977), Muirhead

(1980) and Cambanis, Huang, and Simons (1981). The following basic properties

obtained by the above authors are needed in this paper. A
(1) Let u (n) denote a random vector which is uniformly distributed

on the unit sphere in K" and Qn(llsllz) denote its characteristic func-

tion. If @n » n>1, is the class of all functions ¢:[0,%) + K such

that ¢(ll:ll2) is a characteristic function, then ¢ € ¢n if and only if
(1.1) ¢(t) = rﬂn(rzt)dl’(r) ; t>0,
0

for some distribution function F on [0,°) (cf. Schoenberg (1938)).

(2) x~ EC (4,Z,4) with rank rk(Z) = k if and only if
(1.2) X d H + RA'u(k)

where R > 0 1is independent of E(k) . E = é'é is a factorization of E
1.e., A is a k X n matrix and rk (é) = k) and the distribution func-
tion F(x) of R 1is related to ¢ as in (1.1) with k substituted for
n. Here, x 4 y denotes that the random vectors X and y are identi-
cally distributed (cf. Cambanis, Huang, and Simons (1981)). In the next

"nan
section we discuss the operation d in detail.

(3) 1f xVv N (yI), then x* EC (4,I,4) with ¢(t) = exp(-t/2)
and Rz v x: s where x: denotes the chi-squared distribution with u

degrees of freedom.

If A isan n X n symmetric matrix, what is the distribution of

x'Ax? Kelker (1970) obtained the distribution of x'Ax/x'x in the case
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of x" ECn(g,In,¢) and the distribution of f'ﬂf under the condition
that x has finite fourth moments and x has a density. Kariya and
Eaton (1977) gave the distributions of g'flﬂfﬂ and §'é§/”§"2 » where
“5”2 = 5'5. There is a rich bibliography on the distribution of quad-
ratic forms in normal population. Recently, Anderson and Styan (1980)
reviewed various extensions of Cochran's Theorem in a bibliographic and
historical setting. Our purpose in this paper is to extend Cochran's
Theorem to elliptically contoured distributions in various aspects. The
main results are in Sections 4 and 5. In Section 3 we list some basic
properties of Dirichlet distributions that are needed later. Some appli-
cations are given in Section 6.

Throughout the paper lﬂ5g,§) denotes the n-dimensional normal distri-
bution with mean 1 and covariance matrix E . xi denotes the chi-squared

~

distribution with k degrees of freedom, F(k,%) denotes the F-distribution
with k and 2 degrees of freedom, t denotes the t-distribution with

n degrees of freedom, In denotes the n X n identity matrix, §n denotes
the n X 1 vector with elements 1, rk(é) denotes the rank of the matrix
A, and é. denotes a generalized inverse.

2. The Operation = .

If random vectors x and y have the same distribution, we denote

that fact by x d Y-

(1) Assume X, y, z and w are random vectors, x and 2z are independ-

~ ~

ent, y and w are independent, and x d y. Then =z d w 1if and only if

(2.1) x+z d

y+w.




In particular, if 2 is a nonrandom vector, then x = y implies x + z

-~

gy"'f.

(2) Assume that §§Z and f

tions, then

(
ffl(f)l fl(g)}
(2.2) £,00 4 |52
\fm(f)J kfm(z)i
For instance, we have
2.3 x'ax & ylay, x'x 9y
x'A. x y'Aly
(2.4) . d
] 1
A X yAY

(3) The following fact is important in this paper.

Lemma 1. Assume that x and y are n X 1 random vectors, z is a

~

random variable and is independent of x and y» respectively.

(2.5) P(z>0)

then xdy if and only if zxﬂzy

-~

Proof. Firstly, we prove that Lemma 1 holds 1if

(2.6) P(xi>0) = P(yi> 0) =

3

(*),

j=1,...,m, are Borel func-

=1

1,

i=1,...,n.




By using (2.2) we have

lnle lnzyl lnxl lnyl
zxgzy" . d . 0].nzen+ . In n+ :
luzxn lnzy':I Inx lnyn
lnxl lnyl
» : g : *® x g z .
lnxn lnyn

Secondly, we consider x and y to be arbitrary random vectors. It

~

is enough to prove the lemma in the case of x and y being scalar random

variables because

x $ y @ a'x d a'y, Va E]R.n_" za'x $ za'y,

@ a'(zx) d a'(zy), Va Emn," zx d zy
if we have proved the lemma in the above case. Let
x if x>0 0

£,(x) = » £ (x) =
0 if x<0 -X

Va €R
~ n

if x>0

if x< 0

and x = f+(x) , X = £ (x); y+ = f+(y) and y = f (y) . It is easy to

verify that

xgyﬂx+gy+’ x-s

y , and p(x=0) = p(y=0) « < 4 y eand x

+ -d -

1f we can prove that ox' & zyf“ < 4 y+ and x4 gy ®x ¢ y » them

the assertion follows from




x & zy @ (zx)* & (zy)+ and (zx)" ¢ (zy)~ @
axt  2y* and =x 8 zy‘v‘*'x."‘-1 y' and x & y‘“xgy.

Now we prove that zx+ d zy+_“ x+ ¢ y+ . Assume zx+ ¢ zy+ s then ,
!
{

p(x>0) = p(x'>0) = p(zx'>0) = p(zy'>0) = p(y™>0) = p(y>0)
and
it it + it +
p(x>0)E(e ***|x>0) = E(e™*** ) - p(x<0) = ECe "2 ) - p(y<0)
- E(eitzyly>0) p(y>0).

From the first part of the proof we have E(eitx[x>0) - E(eity[ y>0),

i.e., x d y+ . The "+ part follows by the same technique. Similarly '
i

-4 y . Q.E.D.

3. The Dirichlet Distribution.

If y= (yl,...,ym)‘ is a random vector with Zl; vy - 1 and

(yl,...,ym_l)' has the density with a, >0, i=1,...,m,

¢ a
T )1:"'1 m~1 IRy m-~1 -1
1- ]t
1

(3.1) Ppltysecesty ) = o 111 t
HI‘(ai)
1

n-1
if t 20, 1=1,...,m1, );:1<1,

= 0, otherwise.

We say that y 1s distributed according to a Dirichlet distribution and

%M s ot . e tm———_ R




denote it as (yl""’ym-l) 4" Dm(ai,...,am_l;um) . When m=2 Dz(dl;dz)
reduces to the Beta distribution, B(ul,o.z) .

It is a well-known fact that if x " Nn(O,In) and is partitioned H
into m parts 5(1),...,5(” with al,...,am components of X, respec-

tively, i.e.,
X

(3.2) x = ,

x (m)

then the joint density of

Fuiw  He-nifwn| o [ﬁ ﬁ'.-;-i.“_m]
el lel? mzrn 2 e

In particular, if o = ... =0Q =1, a =n-k, m= k+l, then

1 k k+l
xz x2 ‘
._1_2,...,—% has Dk+1 {%,...,%‘-; B%‘—‘] as its density. It can be veri-
W2l ]
i
H 13
i I, | lxkl |4
e fied that the density of —ng“-,..., x is . :
! n-k_,
rd 2% kL) 2 lzc 2, :
. 1 - > 0 i- 1 se e k H X < :
(3 3) r(B;k),"}ik 1 §. xi if xi 2 ’ ’ ’ s ¢ 1 » 1
*) *x
and the density of -ﬂ;u, Tl is
a f5E-1 :
I‘(i') ko, ko, ) v
= - < . t
@8 gylxppeeem) oy (1o b x| s lE
2 7

If x"EC(0,L4, them (cf. (1.2))




(n)

¢ @

(3.5) x
wvhere R and E(n) are independent. From (2.3)
(3.6) ”5”2 - 5'5 d Rzg(n) 'E(R) - RZ or “?5” d R .

If p(x=0) = 0 (or p(R=0)=0), we have (cf. Cambanis, Huang, and Simons,

(1981), Lemma 1)
d
(3.7 x/lxl = o,

and it is independent of | x|} d R. Note that (3.7) holds for all of the
class of spherical distributions with p(x=0) =0. Thus we can assume
xn Nn(o'ln) to obtain the distribution of ratios. We will use the property

many times. Denote u(n) = (ul,...,un)'. We immediately obtain that

(1) the density of uil,...,uik, 11 <1, <eeeci <n ds
gn(xl,...,xk), (cf. (3.4));
(11) the density of Iuill,...,|u1k|, 1<1, <d,<eeeci <n, 18 (3.3);
(111) 1f u(n) is partitioned into m parts as the same as (3.2), then
12 (2) 1 1 .1
the density of ("‘,’,(1)51 ""’“E(m-l)") 18 D (5 apseensy & 155 @)
m ri
(iv) Let = Efll u,”], then yu = 0 if some r
rl,...,rm 1 i rl,...,rm i
are odd. If all of r,,...,r_ are even, L can be obtained as
1l m TyseeesTy

moments of the Dirichlet distribution (cf. Johnson and Kotz (1972)), i.e.

(3.8) url,...,l‘m - ___;T—-—_ ’




+ o reeTRPY -

There is a close relationship between the chi-squared distribution and

Dirichlet distribution from the above discussion. The following are further

results.
Lemma 2. Assume that (2 cesZ. ) VD (lo. . lu'-l- ) with
— 1°°"°*""m wtl 2 "17°°°%2 Tm’ 2 "m+l
+1
ai >0, i=1,...,mtl, and ET ai = n and Yor¥ysecsYpey 8TE distri-

buted as chi-squared distributions with degrees of freedom LA PR e

respectively; then

m
Ty (£,
(3.9) ¢, SR (theeesty) = 1__n_i*
n n'm ¢2 (Z t)
o1 3
o
i r n r(-21+ it,) ,

n o
I‘(2+i(t1+---+tm)) =1 r('z'l)
where ¢(*) denotes the characteristic function and 1 = V-1 .

Proof. Let x v Nn(g’}.n) and X(1)7* X (n+1) have the similar sense

as (3.2). Then le(j)llz d Yy j=1,...,m#l, and Hx”z d Yo+ We have

lxegyl®)  [llxegyl /sl
. 2 E M 5"2 ’
Uzell?) Ul gyl A1zl
and
2
(z,,ugu,u’ tlxeayll el
l . d R’n"fuz € * :
21z ! Lz yll /051




The first part of (3.9) follows from the fact that [|x|| and x/l|x|l are
independent and (“5(1)”2/“5“2,...,I[E(m) ||2/||§[|2) d (zy500052,). Note
(cf. Press (1969))

ten 24
icl y 27T (3+ 1t)
E(e nj) -

a
r (31)

the second part of of (3.9) follows. Q.E.D.

In particular, if 2z ~ B(—lf. %5), Yo xﬁ and y, v xi. then

¢ n-k

(t) ny ok k
(3.10) A t = knyl ) I‘(Z)I‘(2+1t) ) B(2+it, 3 )
) 2o® oy B rr@einy s 2y '
nY0 2" %2 2° 2

where B(a,b) is Beta function.

1 11

Lemma 3. Assume that X N Nn(g’Zn)’ (zl""'zn-l) v Dn(-f""’i;i R
z = 1-2?_-1 Zis Yyseee ¥, are i.1.4., yi'\:le, i=1,...,n, and

-él""’ém are n X n symmetric matrices. Let gi(tl,...,tn), i=1,...,m,

be linear functions of tl,...,tn, then

5'{\15/“5”2 8,250 002 ) x'A ) gy (ygseeeny)
(3.11) : d : of 1 |9 : :
o S N ORI ) B LN B PRI

Proof. We firstly prove the implication towards the left. If the right

side of (3.11) holds then

10




r e et A At e TAT

n
g yeves )
5'§1§/l|§|l2 x'Ax) (g (yeeenny) sl(xi. ces .xi) Lllgl? |2
U=+ -] i |$ : 3 b=l :
f'énf/"f"z f'fnf gm(yl,...,yn) gm(xi,...,xi) } xi xz )
sgm 4 4 J
[Py s
and from Lemma 1
f x2 x2 3
gy (—=, ..., —2
5'51§AI5|IZ x| lbe |2 81(21000002)
: d : d
5'5,,5’”5“2 xi xrz1 8y (Zy0ee02)

( seees )
R MR

Here we use the fact again that ||xH2 and 1‘5,”!” are independent. The proof

in the other direction is similar. Q.E.D.

By Lemma 3, we can change the theory of distributions of quadratic forms

from chi-square distributions to Dirichlet distributioms.

Corollary 1. Assume that x " Nn(O,I) and A is an n X n symmetric

matrix, then x'Ax/[x|f v B, %55 1f and only 1f A% = A and rk(A) = k.

Proof. By Cochran's Theorem, A2 = A and rk(A) = k if and only if

-~
~ nene

x'Ax xk or x'Ax g Zl Yo hence if and only if x'l\x/"x"2 - Z: z, " B(k L

from Lemma 3 with m =1 and gl(tl,...,tn) =ttt Q.E.D.




Corollary 2. Assume that x Nn(O.In). A and B are nXn symnetric

wmatrices, then Bpsceend has the Dirichlet distribution Dh( seces 2 2) and

n
21 z, 1, then

x'Ax x'Bx k ktm 1
(3.12) = === ,)f sz, km < n,

IxIf |xn2 o1 33

if and only if AB =~ 0, where Ai and VvV, are nonzero real numbers.

3

Proof. By Craig's Theorem (cf. Anderson and Styan (1980)) AB = 0 if

and only if x'Ax and x Bx are independent or if and only if

~

(x'Ax, x'Bx) d {E Xiyi. ? ViViik
S R

where A A, and V

l,o-o,k 1,o.o’m
respectively. Thus the corollary follows by Lemma 3. Q.E.D,

Corollary 3. Let x, A and B be defined as in Corollary 2, then
' ax/lxP, x'Bx/lixl®) ~ Dyc%, 3 Bkmy with k>0, m>0, kim<n, if
and only 1f AB= 0, A% = A, BZ = B, rk(A) = k and rk(B) = m.

kém
Proof. The corollary follows from Corollary 2 and (21 i’ xk+1 1) i
k m,  n-k-m

D3(2, 2’ 2 )

Q.E.D.

4. Distributions of Quadratic Forms and Cochran's Theorem.

In this section we want to extend distributions of quadratic forms and
Cochran's Theorem to the case of elliptically contoured distributions with
mean zero. Firstly, we need to generalize the Dirichlet distribution and

the Beta distribution.

12

-

V_ are the nonzero ecigenvalues of A and B,




2
If a random vector (zl,...,z‘)' satisfies (zl,...,zn) ¢ R (“1""'“11)’

vhere R " F(x), R 1is independent of (“1""’“n-1)’ E: u, = 1, and
(“1"“’"n-1) N Dm(al,...,a‘_l;an), then we write (zl""’zm-l) N
Gm(al,...,um_lgam;tb) and (zl""’zn) n Gm(al,...,am_l,am;zb), where ¢
is related to F(x) as in (1.1) with n = 2(a1+---+0.m).

It is easy to show that the density of Gm(al,...,am_l;am;¢) is

m 1 i i

'@ w1l a-1 -1 )a -1
(4.1) —2— @1 21 r r-(n-z)[rz- ) zi] " dar(x) , if z,20.
m-1
Ill I‘(ai) z

i

Further, if R has a density f£(r), then the joint density of Upseeesty 4

and R is (cf. (3.1))

r® ol a,-1 o-1 la -1
——2 14t j1-TJu £(r) .
= 1=1 1 4
hid I‘(ai)
i=1

Consider the following transformation:

z, = rzui, i=1,...,m=1,
n-1
2
L r [1— gu:l],

2
u, - zilr , i=1,...,m-1,

m 1/2
r= [{ zi] .

Thus the Jacobian of the transformation is




1}5
e ~2(m-1) 1 ‘i‘ s {‘f Bk
mod ‘. =r = z - = z .
. rk 2 i i 2 i b §
1 m -% 0 1 m -k
i‘{ zy) E‘{ zy)

Now the joint density of ZyyeeesZy is

e n o-1m Y-(m-1)/2 [[m Y%
(46.2) -—;;—jg——- ) zii [X zi} f{{z zi} } .

21Ty 1 1
1

1f x N ECn(E,z,¢), then R has a density f£(r) if and only if «x

has a density which must have the form
Iz g £ xw)

for a suitable function g(*). Moreover there exists a relationship

between f£(-) and g(-), i.e.,

n/2
f(r) = %%;757 L s(rz) .

(cf. Cambanis, Huang and Simons (1981)). Substituting the above formula

into (4.2), the denaity of ZyperesZy becomes

14




n/2 =m a~-1 (m P
(4.3) ;—"———- I gt g[z zi] .
I I'a "

)
1 i

In Section 6 we will give some examples of Gm(al,...,am_l;am;‘b). Anderson

and Fang (1982) give some further applications of Gm(al,...,um_l;am;tb).

Theorem 1. Suppose that x v ECn(O I »P), p(x-g) =0 and A 1is an

nXn symmetric matrix, then x'Ax " Gz(;. nzk’ ¢) 4if and only if Az !

~ e

ALl o

and rk(d) = k. ' 3

Proof. 1If Az = A and rk(A) = k, then there exists an orthogonal
Ik 0
matrix T such that T'AT= "™ 7]. Let y=T'x; it can be verified that

, k 2 .
that yo Ecn(p.’.l.n’¢) and :5‘55 - 21 Yo where y= (yl,...,yn)'. Thus

(4.4) x'Ax = Zy - [1y}?

As 1s known, Hy”z and Z: yi |y||2 are independent and the distribution of
Zk yilﬂyllz does not depend on what the distribution of y 4s in the class
of EC (0 I »$); therefore we can assume y N, (0 I ). It implies that
Z, yill}'”z N 13(k u.k) As Hyll € R F(x), we have completed the proof
of the "if" part.

If x'Ax n G (:’. nzk,¢), write

'Ax-lxﬂz':'—"—“'- vz,

T Ha

where RN P(x), z v B(k, -n—;-l-‘-) and they are independent. By Lemma 1 we have

15




From Corollary 1 of Lemma 3 the assertion follows. Q.E.D.

Corollary. Assume that x v ECn(9.§.¢) with § >0 and P(E'Q) = 0,

and A is an nXn symmetric matrix; then x'Ax v 62(12‘-; 12‘3; ¢) 1if and

~ e

only if AIA= A and rk(A) = k.

.

Proof. As I > 0, there exists 2;5 > 0 such that E;{Z’!ﬁ = 3. Let

y = I"%, theny ~ EC_(0,I ,6). By Theorem 1

~ ~

gl 2

x'ax =y (A 9y 6,5 K 9)

1f and only 1f (ZAZ®” = DI and rk(ZALT) = k, i.e. ATA= A and

~ e ~n

rk(é) = k. Q.E.D.

2

It is well-known that A° = A if and only if rk(A) + rk(I-A) = n.

Hence AZA = A if and only if rk(A) + rk(Z-A) = n. The corollary shows
us that ¥ must be a generalized inverse of A. Kelker (1970) gives a
result similar to the corollary, but he assumes finite fourth moments for

the components of x.

If xn Nn(O,In), A' = A, A2 = A and rk(A) = k, then x'Ax ~ x: by

k.,
_2-’
inverse proposition also holds.

Cochran's Theorem, 1.e. 6,(%; 52K; ¢) = X2 if 6(t) = exp(-t/2). The

Theorem 2. The distribution Gz(%-, 9—5—‘5; ¢) is xlz( if and only if

$(t) = exp(-t/2).

16




Proof. We only prove the "only if" part. If z Gz(%; -5;—!; ¢) 1s

xi, by the definition of GZ(E; nT-k; ¢). We have =z ¢ Rz-w, where

RV F(x), wo B(%, _n_;_k) and R? is independent of w. Let Yy v x:

and Yo xi; from (3.10) and the supposition we find

¢y 4 (©)

=0, (B =06 ()b, (8) =6 ,(t) 2Ll
(€)= 9 2 2 g2 2w p 20, ®
n' 0

n n

¢
znyl

which implies R~ xi, i.e. ¢(t) = exp(-t/2). Q.E.D.

By a method similar to those used in proving Theorem 1 and Theorem 2,

we obtain the following theorems and corollaries.

Theorem 3. Suppose that x " Ecn(O,En,dS), p(x-g) = 0, A and B are

-k~
%; n—z—-; ¢) if and

- B, rk(é) = k and rk(E) = L.

n X n symmetric matrices, then (’f'é?f’ :_E’E:_f) N G3(%‘,

only if 4B = 0, A = 4, B?

Corollary 1. Suppose that x " Ecn(0,§,¢) with I > 0, p(x=0) = 0,
A and B are nxn symmetric matrices, then (’.f'f.‘l" 5'21‘5) Yy G3(']2§’ %; 9-:‘22&; $)

if and only if ALA = A, BLB = B, rk(A) = k, rk(g) = % and ALB = 0.

Corollary 2. Assume that x % Ecn(g.zn,tb), p(:f-g) =0, A and B are

projection matrices with rk(A) = k and rk(B) = £ satisfying AB = 0, then

— v FP(k,R) .

I3 ]

b

'
+1H

Proof. As AB = 0, there exists an orthogonal matrix T such that

r'AE - dug(l,...,l,o,...,O) ‘nd F'Br - diag(o,...,0,1,.-.,1,0,...,0).
k k L




k 2 kH 2
Let y =TIx, then y~ EC (0,1 ,4), x'Ax =1, y; and x'Bx=ZI ) vy,
thus
k k k k 3
2 2, 12 2, 12 2 1
x'Ax z Yy X yi/"Z" z 31/"5“ Z zi !
Lot 1 - 2 1 g2l -2 v P(k,L) "
k x'Bx k kit k kil k kL k kit v .
~ 2 251 2,0 12 2 '
I vy 1 vyl >z /el I ozy 3
k+l ktl k+l ~ k+l

where z v N (0,I ). Q.E.D.
-~ n -~ ~n
k2 2

e '; R\ i cimi

Kelker (1970) treated the distribution of 21; xi/ilk_l_1 Xy by a different ;
method.
k £ n-k=%
Theorem 4. The joint distribution 653, 25— ¢) 1s the product

of the distributions of xi and xi if and only if ¢(t) = exp(-t/2). A

Theorem 5. Suppose that x v ECn(g,In,tb), p(x=g) =0, A and B are

1 1 1 |
n X n symmetric matrices and (zl,...,zn_l) v Dn(f""’f; -2-) is independent '

of R. Then |
; i
. :

x'Ax g { M7t

35 I b oW

Lkt 33

with real numbers A:l and vj if and only if AB = 0 and )\i's are the non~

zero eigenvalues of A, vj'a are the nonzero eigenvalues of B,

The above theorems can be generalized to the case of several quadratic

forms.

18
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3. Tripotent Matrices.

A square matrix A is said to be tripotent whenever A3 = A. Anderson
and Styan (1980) extended Cochran's Theorem to tripotent matrices. If
A3 = A, the eigenvalues of A are 1, -1 and 0. Let p and q denote
the number of eigenvalues equal to 1 and -1, respectively. If
x v Nn(g,zn), then f'g g ¥1"Yps where Y1 and Y, are independent,

v xlz, and yz'\ox:. The distribution of Y177, has been given by Press

(1969) and Robinson (1965) and we denote it by e, -g'). Similarly, if

(vl,v Y D3(%’ -g; E%.ﬂ) we denote the distribution of 2z = V=Y, by
h-p—q.

u®, 4; 2B,

Lemma 4. Assume that X v Nn(O,In) and A isan n x n symmetric matrix.
Then x'Ax ~ H(2, 53 —%"9*\ if and only if A3 = A with p 1l's and

q ~1's as its nonzero eigenvalues.

Proof. Apply Lemms 3 with gl(tl,...,tn) = Z; t, - Xm j and m= 1

which completes the proof.

Now we generalize the distribution H(%, -g»; n_-g:q) to the case of ellip-
tically contoured distributions. If =z d V1 v, N H(%, -'21; 3:12’_-_1)’ R v F(x)
and is independent of 2z, we denote the distribution of Rzz by
H(z, q, ~—.L-—9- ¢) where ¢ is related to F(x) as in (l.l). By the same

technique used in the proof of Theorem 1 and Lemma 4 we obtain the following

theorem.

Theorem 6. Suppose that x ~ EC (O,I 4, p(x-O) =0 and A is an

n x n symmetric matrix, then E'é'f 4" ﬂ(z, %; n_-_p_-_g_ ¢) 1if and only if
3

A=A with p1l's and q -1's as its eigcavalun.

“~
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Corollary. Suppose that x Vv Ecn(9,§,¢) with Z > 0, p(x=0) = 0,
and A isan n X n symetric matrix, then 5'95 ~ 1R, %1 2:§:S; ¢)

1f and only if
(5.1) rk(a) = rk(A-AZA) + rk(A+AZA)
and AL has pl's and q -1's as its eigenvalues.

Proof. As I > 0, there exists E% > 0 such that ):;’)2;i = ¥. Let

x - gkz, then y % Ecn(g,zn,¢) and §'é§ = z'(gkégk)z. From Theorem 6

x"Ax u(%, 3 “—‘%‘—‘1; $) 1if and only if

1) E%egk has p 1's and q -1's as its eigenvalues, or equivalently
AL has pl's and q -1's as its eigenvalues.
3,5 3 L] 8)
(11) (§ AL9)" = (Z°AL°) . Anderson and Styan (1980) point out that
= B 4if and only if rk(B) = rk(§+§2) + rk(B-BZ) for any square matrix
B. Thus (Z%AZE)3 = E%QEH if and only if

~ ~ oy

PR = Tk - ek RTWEAY + s T

oy s

- rk(Aﬁé%A) + rk(eFAzA) . Q.E.D.

~

6. Applications.

In this section some applications are given., In the first part we
consider the theory on linear regression with the error being distributed
according to an elliptically contoured distribution. We will find the
distribution of the sample variance, the distribution of the ratio of the

sample mean to the sample standard deviation in the second part. In addition

20
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we will give the distributions of quadratic forms for the multivariate

t-distribution, the multivariate uniform distribution, etc.

6.1. Linear Regression Analysis. We consider the following model:

= X B

p ¥axplpx1 * Snnqr TR =p<n

(6.1) 13(5) =0, E(ee') =Z>0

ERRXCR RO

There exists a pXp matrix A such that A'é = I and

(6.2) ed ra™ |
Hence
(6.3) ydx8+mn®

i.e., y~ EC (X8,5,9).

Minimizing e'e = (y-XB)'(y-XB) with respect to B gives the least

squares estimator
(6.4) B = x'DXy .

In order to find the distribution of B we need the following lemma.

~

Lemma 5. Assume y© Ecn(u,In,¢) and A is nxp matrix with
rk(A) = p<n; then X = A'yn ECP(A'u,A'A,¢), where e ¢p corres-
*
ponds to R and

21




(6.5) REr.p, o

2

where b >0, b” B(%p R %(n—p)). and b is independent of R. g

Proof. Consider the singular value decomposition of A, i.e., there

exist orthogonal matrices T pxp and énxn such that

é' = Z(Pr g)é' ’ 4

where D= diag(A;,.-.,A)) amd 1y,...,A  are the roots of [A'A-AI] = o.

From the assumption
ydpem®,

thus

4oy +w@, 0u®

because “(n) d Al (n). Let z n Nn(O.In) and

@ |~ 2w ¢
u - > Z = z
- 2(2) L@
vhere ¥1) and 2z (1) are p x 1 vectors. Based on the relationship between

g(n) and z we have
x é A'u+RMDyu g, d A'u+RID,2 ) [z §

= A+ R 2y, 2Dz gy Alz ey, I

4+ anapu®




Since A'A = (EPX) (I'D))', the Lenma follows. Q.E.D.

By Lemma 5 and (6.4) we have

(6-6) 84 o e ers™)
RS e VS
A SIS T |
or g~ ECP(_@.@ X TX'IX(X'X) T,¢4) ,

where ¢ 1is defined by Lemma 5. 1In particular, if I = 021 , then

~ ~

B~ Ecp(g.ozcg'p”‘.m .

Denote
(6.7) s = (y-xB) ' (y~X8)
-1
- y'[I—X(g' ) X'ly
] ' -1 '
= e [I-X(§ X) X']Je .
If en Ecn(g,czzn,@, p(e=9) = 0 and rk)} = p, then 8" UZGZ(JI_'Z-R; %; $)

by Theorem 1. We summarize the above results in the following theorem.

Theorem 7. Assume e N Ecn(O,OZIn,tb), p(e=0) = 0 and TkX = p < n,
then

B vEc (8,7 XD ™9

and
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Now we consider the linear hypothesis
(6.8) H: H8 = ¢ ,

where

3=}

: q%xp, k(i) = q <p .

Under the condition of HB = ¢ minimizing e'e with respect to B

gives the least squares estimator

(6.9) By ~ B - DR BED @)

where B 1is given by (6.4), and the corresponding (Z-ifBH)'(Z-—XS )
becomes
- _ A ' _ ~ - _ A A- ~ ' - -~ A- A
(6.10) sy = (X '(3-XEp = (y-XEHKE-X8) "(y-XE+HKE-XB,)
= s + (@f-c)"(B(x'0) "w) o)
where s 1s defined by (6.7).
The statistics testing the hypothesis (6.8) is

8,;~8
(6.11) A= et

When the hypothesis 1s true we have ¢ = HB and

61 -0 = 5d-p § maxnxae® drapTye .
Thus

|
(61 g = ¢ XD EED TE TRED E e

[
]
i
X J
”~~
|
]
<
A4
L
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It is easy to see that Q}Zl = Dy» rk?H = q, and Pﬂ(z-it(g'{()-ly) = 0. From

(6.13) and (6.7) X can be expressed as

& Oye

-1 ’
o' -XE'D X' le

(6.14) A=
and
1‘—;2 A v F(q,n-p) . ]

(cf. Corollary 2 of Theorem 3).

o

Theorem 8. Assume e Vv Ecn(o,czln,(b), p(e=0) = 0 and rkX = p, when

the hypothesis (6.8) is true the distribution of (n-p)h/q 1is F(q,n-q).

o

6.2. Some examples.

Example 1. If f’VECn(O,}n,@ and p(x=0) = 0, let

(6.15) X =

- N
8
L]

[

n
and sz = Z (x -x)2 .
1 i

We can express s2 - x'(In-M)x with M = % ene!'l. It is easy to check that

(}--A'M)2 = I-M and rk(I-M) = n-1. By Theorems 1l and 2 §2 v GZ(E.-':l: %; $)
2 2 4
1 and 8 M Xa-1 if and only if ¢(t) = exp(-t/2), i.e. =x " Nn\i-,gn).

Further, if x “ EC (0,Z,4) with I >0 and p(x=0) = 0, and x and
e’ are defined by (6.15), by the corollary of Theorem 1 & ~ G,(25%; 25 ¢)
if and only if I is a generalized inverse of (I-M). Let E be an orthogonal

matrix with the first row (1/v/h,...,1//n), then

0 O
rawr- |

9 En-l
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or

o
[ X =]

9 En—l

It can be verified that any generalized inverse (I-M)  of (I-M) can be

written as

I e § G 1
i-w =T r'.,
€1 a1

where €11* 12 and €1

structure, but here I > 0, {cij} have to satisfy the conditions:

are arbitrary. Hence E must have the above

= !
S21 T S12

and ¢y > €15C-

Example 2. Assume X " Ecn(g,zn,¢), p(x=0) = 0, and X and 32 are

defined by (6.15), we want to point out that

(6.16) t = Vn(n-l) (n 1 -

Let T be the same as Example 1 and - = Tx, then y~ ECn(Q.En.¢) and

v, = /ax, 8°= 22 y1 If zVN(0,I), the

Ay o gl g mflEl

e
j— / v ylP f 0 j’z—

because (y,/lylls....y, /13D ¢ (=, Nzl ,2 /lzlD, hence their Borel functions

~ tn-1)

™~
N
M N

have the same distribution.




o .

. rk(A) = k, hence %y'Ay ~ F(k,v) 1f and only if AIA = A and rk(A) = k.

Example 3. Multivariate t-distribution. If x v Nn(g,g), 8 X

(i.e., sz N x\z)) and x is independent of s, the distribution of
y =N x/s 1s called the multivariate t-distribution. (cf. Johnson and

Kotz (1972)). When u =0, L1 = In’ the density of y 1is

F(— (n+v)) n

2, -(n+v)
(6.17) ?1:);‘—1"7—_— (1+v- g vy

It can be found that the density of ||yl is

1
2T (n+v))
2 un-l(l + v-1uz) s(n+v)

(6.18) p"y”(u) = »,u>0,

r(-;- n)I‘(-% vyv it

Obviously the multivariate t-distribution is an elliptically contoured dis-

tribution. If x "~ N (4,Z), from (1.2)
x & H+ RA'u(n)

where R v X, 1is independent of g(n) and A'é- L. Thus if p =0
(6.19) y= ( :) (n) i

which is the stochastic representation of y. The density (6.18) of YU R/s f

2
can be motivated by the F-distribution because % W 'Isi) = %R—z ~ F(n,V).
s

If A is an n X n symmetric matrix,

o e apro e

x'Ax
y'Ay = v = E" .

~ ~~
8

As x'Ax 1s independent of sz and x'Ax n xk if and only if ALA = A and

~ ns ~ o~

o m.
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Further if I = I, A and B are projection matrices with rk(é) -k,
rk(g) = £, then % (z'éz, Z'gz) is distributed according to multivariate
inverted Dirichlet distribution (cf. p. 238, Johnson and Kotz (1972)).

When v =1 the multivariate t-distribution reduces to multivariate

Cauchy distribution.

Example 4. Uniform distribution in the unit sphere in R, If
x is distributed according to the uniform distribution in the unit sphere

in IR“, its density is

régd

n/2
(6.20) p () =4 " .

0 otherwise .

It can be shown that the density of ”f” is
p“x”(u) =™ for o Lu<l,
and the density of “5“2 is

(u) = -;-nu"“'l for 0<us<l.

lixI?

In this case the density of Gz(% K ) 18 (cf. (4.1))




e A M

n. k_ nk_

n F(Z) 3= 1 1 —(2-2), 2 5 -1 n-1
S * r (r®-x) dr
P(E)P(-E-O Vx

n k n-k
LR L R U i 2 |1
réHresk o-l /x
- = b 4 (1~x) ’ 0 ix<1l.
reprEk

It is the density of 8(53 Ei%:EQ. Similarly, Gm(al,...,am_l;am;¢) is

equal to Dm(al""’am-l;aml)’ where 2(a1+.---+ am) =n,

By the theorems in Section 4 we obtain the following conclusions: If A

is an n X n symmetric matrix, then x'Ax v B(k, n+§-k) if and only if

éz = A and rk(é) =k, If éi’ i=1,...,m1l, are n X n symmetric

matrices, then

' ' ﬁ-. aﬂl’l_ n+2-a1—-~--am_1
(X1 e e sX Ay )X ¥ DG beees 58 2 )

2
if and only if A - A, rk(éi) =a,, i=1,...,mv1 and éiéj =0 for 1i¢#j.

Clearly, we can extend the above conclusions to the uniform distribution

in ellipsoid.

29
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